3.2581 \(\int (d+e x)^m (a+b x+c x^2)^{-2-\frac {m}{2}} \, dx\)

Optimal. Leaf size=440 \[ -\frac {\left (-\sqrt {b^2-4 a c}+b+2 c x\right ) (d+e x)^{m+3} \left (a+b x+c x^2\right )^{-\frac {m}{2}-2} \left (4 c e (a e-b d (m+1))+b^2 e^2 m+4 c^2 d^2 (m+1)\right ) \left (\frac {\left (\sqrt {b^2-4 a c}+b+2 c x\right ) \left (2 c d-e \left (b-\sqrt {b^2-4 a c}\right )\right )}{\left (-\sqrt {b^2-4 a c}+b+2 c x\right ) \left (2 c d-e \left (\sqrt {b^2-4 a c}+b\right )\right )}\right )^{\frac {m+4}{2}} \, _2F_1\left (m+3,\frac {m+4}{2};m+4;-\frac {4 c \sqrt {b^2-4 a c} (d+e x)}{\left (2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e\right ) \left (b+2 c x-\sqrt {b^2-4 a c}\right )}\right )}{4 (m+1) (m+3) \left (2 c d-e \left (b-\sqrt {b^2-4 a c}\right )\right ) \left (a e^2-b d e+c d^2\right )^2}+\frac {e (d+e x)^{m+1} \left (a+b x+c x^2\right )^{-\frac {m}{2}-1}}{(m+1) \left (a e^2-b d e+c d^2\right )}+\frac {e m (2 c d-b e) (d+e x)^{m+2} \left (a+b x+c x^2\right )^{-\frac {m}{2}-1}}{2 (m+1) (m+2) \left (a e^2-b d e+c d^2\right )^2} \]

[Out]

e*(e*x+d)^(1+m)*(c*x^2+b*x+a)^(-1-1/2*m)/(a*e^2-b*d*e+c*d^2)/(1+m)+1/2*e*(-b*e+2*c*d)*m*(e*x+d)^(2+m)*(c*x^2+b
*x+a)^(-1-1/2*m)/(a*e^2-b*d*e+c*d^2)^2/(1+m)/(2+m)-1/4*(b^2*e^2*m+4*c^2*d^2*(1+m)+4*c*e*(a*e-b*d*(1+m)))*(e*x+
d)^(3+m)*(c*x^2+b*x+a)^(-2-1/2*m)*hypergeom([3+m, 2+1/2*m],[4+m],-4*c*(e*x+d)*(-4*a*c+b^2)^(1/2)/(b+2*c*x-(-4*
a*c+b^2)^(1/2))/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))*(b+2*c*x-(-4*a*c+b^2)^(1/2))*((2*c*d-e*(b-(-4*a*c+b^2)^(1/2)
))*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(b+2*c*x-(-4*a*c+b^2)^(1/2))/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(2+1/2*m)/(a*e^
2-b*d*e+c*d^2)^2/(1+m)/(3+m)/(2*c*d-e*(b-(-4*a*c+b^2)^(1/2)))

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 440, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {744, 806, 726} \[ -\frac {\left (-\sqrt {b^2-4 a c}+b+2 c x\right ) (d+e x)^{m+3} \left (a+b x+c x^2\right )^{-\frac {m}{2}-2} \left (4 c e (a e-b d (m+1))+b^2 e^2 m+4 c^2 d^2 (m+1)\right ) \left (\frac {\left (\sqrt {b^2-4 a c}+b+2 c x\right ) \left (2 c d-e \left (b-\sqrt {b^2-4 a c}\right )\right )}{\left (-\sqrt {b^2-4 a c}+b+2 c x\right ) \left (2 c d-e \left (\sqrt {b^2-4 a c}+b\right )\right )}\right )^{\frac {m+4}{2}} \, _2F_1\left (m+3,\frac {m+4}{2};m+4;-\frac {4 c \sqrt {b^2-4 a c} (d+e x)}{\left (2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e\right ) \left (b+2 c x-\sqrt {b^2-4 a c}\right )}\right )}{4 (m+1) (m+3) \left (2 c d-e \left (b-\sqrt {b^2-4 a c}\right )\right ) \left (a e^2-b d e+c d^2\right )^2}+\frac {e (d+e x)^{m+1} \left (a+b x+c x^2\right )^{-\frac {m}{2}-1}}{(m+1) \left (a e^2-b d e+c d^2\right )}+\frac {e m (2 c d-b e) (d+e x)^{m+2} \left (a+b x+c x^2\right )^{-\frac {m}{2}-1}}{2 (m+1) (m+2) \left (a e^2-b d e+c d^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^m*(a + b*x + c*x^2)^(-2 - m/2),x]

[Out]

(e*(d + e*x)^(1 + m)*(a + b*x + c*x^2)^(-1 - m/2))/((c*d^2 - b*d*e + a*e^2)*(1 + m)) + (e*(2*c*d - b*e)*m*(d +
 e*x)^(2 + m)*(a + b*x + c*x^2)^(-1 - m/2))/(2*(c*d^2 - b*d*e + a*e^2)^2*(1 + m)*(2 + m)) - ((b^2*e^2*m + 4*c^
2*d^2*(1 + m) + 4*c*e*(a*e - b*d*(1 + m)))*(b - Sqrt[b^2 - 4*a*c] + 2*c*x)*(((2*c*d - (b - Sqrt[b^2 - 4*a*c])*
e)*(b + Sqrt[b^2 - 4*a*c] + 2*c*x))/((2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)*(b - Sqrt[b^2 - 4*a*c] + 2*c*x)))^((4
 + m)/2)*(d + e*x)^(3 + m)*(a + b*x + c*x^2)^(-2 - m/2)*Hypergeometric2F1[3 + m, (4 + m)/2, 4 + m, (-4*c*Sqrt[
b^2 - 4*a*c]*(d + e*x))/((2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)*(b - Sqrt[b^2 - 4*a*c] + 2*c*x))])/(4*(2*c*d - (b
 - Sqrt[b^2 - 4*a*c])*e)*(c*d^2 - b*d*e + a*e^2)^2*(1 + m)*(3 + m))

Rule 726

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((b - Rt[b^2 - 4*a*
c, 2] + 2*c*x)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Hypergeometric2F1[m + 1, -p, m + 2, (-4*c*Rt[b^2 - 4*a*c,
 2]*(d + e*x))/((2*c*d - b*e - e*Rt[b^2 - 4*a*c, 2])*(b - Rt[b^2 - 4*a*c, 2] + 2*c*x))])/((m + 1)*(2*c*d - b*e
 + e*Rt[b^2 - 4*a*c, 2])*(((2*c*d - b*e + e*Rt[b^2 - 4*a*c, 2])*(b + Rt[b^2 - 4*a*c, 2] + 2*c*x))/((2*c*d - b*
e - e*Rt[b^2 - 4*a*c, 2])*(b - Rt[b^2 - 4*a*c, 2] + 2*c*x)))^p), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[
b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0
]

Rule 744

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)
*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 - b*d*e + a*e^2)),
Int[(d + e*x)^(m + 1)*Simp[c*d*(m + 1) - b*e*(m + p + 2) - c*e*(m + 2*p + 3)*x, x]*(a + b*x + c*x^2)^p, x], x]
 /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e
, 0] && NeQ[m, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]) || (SumSimplerQ[m, 1] && IntegerQ
[p]) || ILtQ[Simplify[m + 2*p + 3], 0])

Rule 806

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2)), x] - Dist[(b
*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x],
x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[Sim
plify[m + 2*p + 3], 0]

Rubi steps

\begin {align*} \int (d+e x)^m \left (a+b x+c x^2\right )^{-2-\frac {m}{2}} \, dx &=\frac {e (d+e x)^{1+m} \left (a+b x+c x^2\right )^{-1-\frac {m}{2}}}{\left (c d^2-b d e+a e^2\right ) (1+m)}+\frac {\int (d+e x)^{1+m} \left (\frac {1}{2} (-b e m+2 c d (1+m))+c e x\right ) \left (a+b x+c x^2\right )^{-2-\frac {m}{2}} \, dx}{\left (c d^2-b d e+a e^2\right ) (1+m)}\\ &=\frac {e (d+e x)^{1+m} \left (a+b x+c x^2\right )^{-1-\frac {m}{2}}}{\left (c d^2-b d e+a e^2\right ) (1+m)}+\frac {e (2 c d-b e) m (d+e x)^{2+m} \left (a+b x+c x^2\right )^{-1-\frac {m}{2}}}{2 \left (c d^2-b d e+a e^2\right )^2 (1+m) (2+m)}+\frac {\left (b^2 e^2 m+4 c^2 d^2 (1+m)+4 c e (a e-b d (1+m))\right ) \int (d+e x)^{2+m} \left (a+b x+c x^2\right )^{-2-\frac {m}{2}} \, dx}{4 \left (c d^2-b d e+a e^2\right )^2 (1+m)}\\ &=\frac {e (d+e x)^{1+m} \left (a+b x+c x^2\right )^{-1-\frac {m}{2}}}{\left (c d^2-b d e+a e^2\right ) (1+m)}+\frac {e (2 c d-b e) m (d+e x)^{2+m} \left (a+b x+c x^2\right )^{-1-\frac {m}{2}}}{2 \left (c d^2-b d e+a e^2\right )^2 (1+m) (2+m)}-\frac {\left (b^2 e^2 m+4 c^2 d^2 (1+m)+4 c e (a e-b d (1+m))\right ) \left (b-\sqrt {b^2-4 a c}+2 c x\right ) \left (\frac {\left (2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e\right ) \left (b+\sqrt {b^2-4 a c}+2 c x\right )}{\left (2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e\right ) \left (b-\sqrt {b^2-4 a c}+2 c x\right )}\right )^{\frac {4+m}{2}} (d+e x)^{3+m} \left (a+b x+c x^2\right )^{-2-\frac {m}{2}} \, _2F_1\left (3+m,\frac {4+m}{2};4+m;-\frac {4 c \sqrt {b^2-4 a c} (d+e x)}{\left (2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e\right ) \left (b-\sqrt {b^2-4 a c}+2 c x\right )}\right )}{4 \left (2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e\right ) \left (c d^2-b d e+a e^2\right )^2 (1+m) (3+m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 6.26, size = 492, normalized size = 1.12 \[ \frac {\frac {(d+e x)^{m+2} \left (a+b x+c x^2\right )^{-\frac {m}{2}-1} \left (c d e-\frac {1}{2} e (2 c d (m+1)-b e m)\right )}{2 \left (-\frac {m}{2}-1\right ) \left (a e^2-b d e+c d^2\right )}-\frac {\left (\sqrt {b^2-4 a c}-b-2 c x\right ) (d+e x)^{m+3} \left (a+b x+c x^2\right )^{-\frac {m}{2}-2} \left (b \left (\frac {1}{2} e (2 c d (m+1)-b e m)+c d e\right )-2 \left (a c e^2+\frac {1}{2} c d (2 c d (m+1)-b e m)\right )\right ) \left (\frac {\left (\sqrt {b^2-4 a c}+b+2 c x\right ) \left (e \sqrt {b^2-4 a c}-b e+2 c d\right )}{\left (-\sqrt {b^2-4 a c}+b+2 c x\right ) \left (-e \sqrt {b^2-4 a c}-b e+2 c d\right )}\right )^{\frac {m}{2}+2} \, _2F_1\left (\frac {m}{2}+2,m+3;m+4;-\frac {4 c \sqrt {b^2-4 a c} (d+e x)}{\left (2 c d-b e-\sqrt {b^2-4 a c} e\right ) \left (b+2 c x-\sqrt {b^2-4 a c}\right )}\right )}{2 (m+3) \left (e \sqrt {b^2-4 a c}-b e+2 c d\right ) \left (a e^2-b d e+c d^2\right )}}{(m+1) \left (a e^2-b d e+c d^2\right )}+\frac {e (d+e x)^{m+1} \left (a+b x+c x^2\right )^{-\frac {m}{2}-1}}{(m+1) \left (a e^2-b d e+c d^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^m*(a + b*x + c*x^2)^(-2 - m/2),x]

[Out]

(e*(d + e*x)^(1 + m)*(a + b*x + c*x^2)^(-1 - m/2))/((c*d^2 - b*d*e + a*e^2)*(1 + m)) + (((c*d*e - (e*(-(b*e*m)
 + 2*c*d*(1 + m)))/2)*(d + e*x)^(2 + m)*(a + b*x + c*x^2)^(-1 - m/2))/(2*(c*d^2 - b*d*e + a*e^2)*(-1 - m/2)) -
 ((-2*(a*c*e^2 + (c*d*(-(b*e*m) + 2*c*d*(1 + m)))/2) + b*(c*d*e + (e*(-(b*e*m) + 2*c*d*(1 + m)))/2))*(-b + Sqr
t[b^2 - 4*a*c] - 2*c*x)*(((2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)*(b + Sqrt[b^2 - 4*a*c] + 2*c*x))/((2*c*d - b*e -
 Sqrt[b^2 - 4*a*c]*e)*(b - Sqrt[b^2 - 4*a*c] + 2*c*x)))^(2 + m/2)*(d + e*x)^(3 + m)*(a + b*x + c*x^2)^(-2 - m/
2)*Hypergeometric2F1[2 + m/2, 3 + m, 4 + m, (-4*c*Sqrt[b^2 - 4*a*c]*(d + e*x))/((2*c*d - b*e - Sqrt[b^2 - 4*a*
c]*e)*(b - Sqrt[b^2 - 4*a*c] + 2*c*x))])/(2*(2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)*(c*d^2 - b*d*e + a*e^2)*(3 + m
)))/((c*d^2 - b*d*e + a*e^2)*(1 + m))

________________________________________________________________________________________

fricas [F]  time = 1.46, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (c x^{2} + b x + a\right )}^{-\frac {1}{2} \, m - 2} {\left (e x + d\right )}^{m}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(c*x^2+b*x+a)^(-2-1/2*m),x, algorithm="fricas")

[Out]

integral((c*x^2 + b*x + a)^(-1/2*m - 2)*(e*x + d)^m, x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(c*x^2+b*x+a)^(-2-1/2*m),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [F]  time = 1.91, size = 0, normalized size = 0.00 \[ \int \left (e x +d \right )^{m} \left (c \,x^{2}+b x +a \right )^{-\frac {m}{2}-2}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^m*(c*x^2+b*x+a)^(-2-1/2*m),x)

[Out]

int((e*x+d)^m*(c*x^2+b*x+a)^(-2-1/2*m),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (c x^{2} + b x + a\right )}^{-\frac {1}{2} \, m - 2} {\left (e x + d\right )}^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(c*x^2+b*x+a)^(-2-1/2*m),x, algorithm="maxima")

[Out]

integrate((c*x^2 + b*x + a)^(-1/2*m - 2)*(e*x + d)^m, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (d+e\,x\right )}^m}{{\left (c\,x^2+b\,x+a\right )}^{\frac {m}{2}+2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^m/(a + b*x + c*x^2)^(m/2 + 2),x)

[Out]

int((d + e*x)^m/(a + b*x + c*x^2)^(m/2 + 2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**m*(c*x**2+b*x+a)**(-2-1/2*m),x)

[Out]

Timed out

________________________________________________________________________________________